首页> 外文OA文献 >A two-armed bandit collective for hierarchical examplar based mining of frequent itemsets with applications to intrusion detection
【2h】

A two-armed bandit collective for hierarchical examplar based mining of frequent itemsets with applications to intrusion detection

机译:一种双臂强盗集体,用于基于分层示例的频繁项目集挖掘以及入侵检测应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we address the above problem by posing frequent item-set mining as a collection of interrelated two-armed bandit problems. We seek to find itemsets that frequently appear as subsets in a stream of itemsets, with the frequency being constrained to support granularity requirements. Starting from a randomly or manually selected examplar itemset, a collective of Tsetlin automata based two-armed bandit players - one automaton for each item in the examplar - learns which items should be included in the mined frequent itemset. A novel reinforcement scheme allows the bandit players to learn this in a decentralized and online manner by observing one itemset at a time. By invoking the latter procedure recursively, a progressively more fine granular summary of the itemset stream is produced, represented as a hierarchy of frequent item-sets. The proposed scheme is extensively evaluated using both artificial data as well as data from a real-world network intrusion detection application. The results are conclusive, demonstrating an excellent ability to find frequent itemsets. Also, computational complexity grows merely linearly with the cardinality of the examplar itemset. Finally, the hierarchical collections of frequent itemsets produced for network intrusion detection are compact, yet accurately describe the different types of network traffic present Over the last decades, frequent itemset mining has become a major area of research, with applications including indexing and similarity search, as well as mining of data streams, web, and software bugs. Although several efficient techniques for generating frequent itemsets with a minimum frequency have been proposed, the number of item-sets produced is in many cases too large for effective usage in real-life applications. Indeed, the problem of deriving frequent itemsets that are both compact and of high quality, remains to a large degree open.
机译:在本文中,我们通过将频繁的项目集挖掘作为相互关联的两臂匪问题的集合来解决上述问题。我们寻求找到经常作为项目集流中的子集出现的项目集,并且频率受到限制以支持粒度要求。从一个随机或手动选择的示例物品组开始,一组基于Tsetlin自动机的双臂匪徒玩家(示例物品中的每个项目都有一个自动机)了解应该将哪些物品包括在频繁开采的物品集中。一种新颖的加固方案允许土匪玩家通过一次观察一个项目集,以分散和在线的方式学习该知识。通过递归调用后一个过程,将生成项集流的逐步更精细的摘要,表示为频繁项集的层次结构。使用人工数据以及来自真实世界网络入侵检测应用程序的数据对提议的方案进行了广泛的评估。结果是结论性的,证明了找到频繁项集的出色能力。而且,计算复杂度仅随示例项集的基数线性增长。最后,为进行网络入侵检测而生成的频繁项集的分层集合非常紧凑,但仍能准确描述当前存在的不同类型的网络流量。在过去的几十年中,频繁项集挖掘已成为研究的主要领域,其应用包括索引编制和相似性搜索,以及数据流,Web和软件错误的挖掘。尽管已经提出了几种用于以最小的频率生成频繁项目集的有效技术,但是在许多情况下,所产生的项目集的数量对于实际应用中的有效使用而言太大了。实际上,在很大程度上获得紧凑且高质量的频繁项目集的问题仍然存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号